학술논문

A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects
Document Type
article
Source
Subject
Stress-dependent permeability
Fractured rock
Tension failure regions
Flow paths
Mining & Metallurgy
Civil Engineering
Resources Engineering and Extractive Metallurgy
Language
Abstract
This paper presents a numerical study of the hydro-mechanical behaviour of a fractured rock domain at 1000. m depth below the land surface as a function of different levels of fluid pore pressure. A 2D fractured rock domain is adopted based on data obtained from outcrop mapping, displaying multiple fracture sets, fracture intersections, dead-end and curved fractures. A continuum based numerical model is used to evaluate the effects of compressive boundary stresses, cracking by tension failure in the intact rock and fractures and shear displacement along fractures on its equivalent permeability. Two in situ stress boundary conditions are considered: an isotropic case SR1 with the two horizontal boundary compressive stresses having the same magnitude, and an anisotropic case SR2 with the ratio between these compressive stress components set to be 2. In the SR2 case, changes in the local stress and stress ratio distributions due to different fluid pore pressure levels are anisotropic and more significant than in the SR1 case, because of tension failures in the intact rock forming bridges between fractures. These failure regions opened new flow connections between fractures and thereby caused important anisotropic changes in the flow paths, and significant decrease in local gradients of fluid pore pressure. The equivalent permeability increases sharply when the fluid pore pressure is approximately 90% of the magnitude of the minimum stress at the boundaries of the fractured rock domain. Results show that the equivalent permeability of the fractured rock domain is most sensitive to the fractures normal stiffness, the permeability of the tension failure regions and the power-law exponent for permeability change.