학술논문

encore: an O (Ng2) estimator for galaxy N-point correlation functions
Document Type
article
Source
Monthly Notices of the Royal Astronomical Society. 509(2)
Subject
Space Sciences
Particle and High Energy Physics
Astronomical Sciences
Physical Sciences
methods: numerical
methods: statistical
galaxies: statistics
large-scale structure of Universe
cosmology: theory
Astronomical and Space Sciences
Astronomy & Astrophysics
Astronomical sciences
Particle and high energy physics
Space sciences
Language
Abstract
We present a new algorithm for efficiently computing the N-point correlation functions (NPCFs) of a 3D density field for arbitrary N. This can be applied both to a discrete spectroscopic galaxy survey and a continuous field. By expanding the statistics in a separable basis of isotropic functions built from spherical haonics, the NPCFs can be estimated by counting pairs of particles in space, leading to an algorithm with complexity $ {O}(N_math{g}2)$ for Ng particles, or $ {O}(N_math{FFT}log N_math{FFT})$ when using a Fast Fourier Transfo with NFFT grid-points. In practice, the rate-limiting step for N > 3 will often be the summation of the histogrammed spherical haonic coefficients, particularly if the number of radial and angular bins is large. In this case, the algorithm scales linearly with Ng. The approach is implemented in the encore code, which can compute the 3PCF, 4PCF, 5PCF, and 6PCF of a BOSS-like galaxy survey in $100$ CPU-hours, including the corrections necessary for non-unifo survey geometries. We discuss the implementation in depth, along with its GPU acceleration, and provide practical demonstration on realistic galaxy catalogues. Our approach can be straightforwardly applied to current and future data sets to unlock the potential of constraining cosmology from the higher point functions.