학술논문

Prevention of multidrug resistance (MDR) in osteosarcoma by NSC23925
Document Type
article
Source
British Journal of Cancer. 110(12)
Subject
Biomedical and Clinical Sciences
Oncology and Carcinogenesis
Cancer
Antimicrobial Resistance
Prevention
Pediatric Cancer
Pediatric
Development of treatments and therapeutic interventions
5.1 Pharmaceuticals
ATP Binding Cassette Transporter
Subfamily B
Member 1
Antineoplastic Agents
Phytogenic
Antineoplastic Combined Chemotherapy Protocols
Bone Neoplasms
Cell Line
Tumor
Drug Resistance
Multiple
Drug Resistance
Neoplasm
Drug Synergism
Humans
Osteosarcoma
Paclitaxel
Piperidines
Quinolines
drug resistance
NSC23925
osteosarcorna
Pgp
paclitaxel
Public Health and Health Services
Oncology & Carcinogenesis
Oncology and carcinogenesis
Language
Abstract
BackgroundThe major limitation to the success of chemotherapy in osteosarcoma is the development of multidrug resistance (MDR). Preventing the emergence of MDR during chemotherapy treatment has been a high priority of clinical and investigational oncology, but it remains an elusive goal. The NSC23925 has recently been identified as a novel and potent MDR reversal agent. However, whether NSC23925 can prevent the development of MDR in cancer is unknown. Therefore, this study aims to evaluate the effects of NSC23925 on prevention of the development of MDR in osteosarcoma.MethodsHuman osteosarcoma cell lines U-2OS and Saos were exposed to increasing concentrations of paclitaxel alone or in combination with NSC23925 for 6 months. Cell sublines selected at different time points were evaluated for their drug sensitivity, drug transporter P-glycoprotein (Pgp) expression and activity.ResultsWe observed that tumour cells selected with increasing concentrations of paclitaxel alone developed MDR with resistance to paclitaxel and other Pgp substrates, whereas cells cultured with paclitaxel-NSC23925 did not develop MDR and cells remained sensitive to chemotherapeutic agents. Paclitaxel-resistant cells showed high expression and activity of the Pgp, whereas paclitaxel-NSC23925-treated cells did not express Pgp. No changes in IC50 and Pgp expression and activity were observed in cells grown with the NSC23925 alone.ConclusionsOur findings suggest that NSC23925 may prevent the development of MDR by specifically preventing the overexpression of Pgp. Given the significant incidence of MDR in osteosarcoma and the lack of effective agents for prevention of MDR, NSC23925 and derivatives hold the potential to improve the outcome of cancer patients with poor prognosis due to drug resistance.