학술논문

Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways
Document Type
article
Source
Journal of Nutritional Biochemistry. 25(9)
Subject
Akt
c-kit
Eicosapentaenoic acid
eNOS
Human endothelial progenitor cells
microRNA 221
Neovasculogenesis
Stem Cell Research - Nonembryonic - Non-Human
Prevention
Stem Cell Research
Nutrition
3.3 Nutrition and chemoprevention
Cardiovascular
Nutrition & Dietetics
Biochemistry and Cell Biology
Food Sciences
Nutrition and Dietetics
Language
Abstract
Human endothelial progenitor cells (hEPCs) derived from bone marrow play a crucial in the prevention of ischemic injuries in the course of postnatal neovasculogenesis. Frequent fish oil (FO) consumption is reportedly associated with a significantly lower incidence of cardiovascular disease. However, the molecular mechanisms of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) are not well elucidated, and the beneficial effect of FO consumption on neovasculogenesis has not been demonstrated yet. In the current study, we investigated the effects of EPA/DHA and FO consumption on neovasculogenesis by using vascular tube formation assay, Western blotting, real-time polymerase chain reaction, immunohistochemical staining and Doppler imaging in both in vitro and in vivo models. The results demonstrate that EPA and DHA dose-dependently enhance the neovasculogenesis and cell migration of hEPCs in vitro. The mechanisms of action included up-regulation of the c-kit protein as well as the phosphorylation of the ERK1/2, Akt and endothelial nitric oxide synthase signaling molecules in hEPCs. Furthermore, EPA significantly suppressed the expression of microRNA 221 in vitro. In experimental animal models, FO consumption significantly induced the formation of new blood vessels (neovasculogenesis) and prevented ischemia. Taken together, it is suggested that FO consumption enhances neovasculogenesis mainly through the effects of EPA in hEPCs, thereby exerting a preventive effect against ischemic injury. © 2014 Elsevier Inc. All rights reserved.