학술논문

New results from the CUORE experiment
Document Type
article
Source
International Journal of Modern Physics A. 37(07)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Physical Sciences
Neutrinoless double beta decay
two-neutrino double beta decay
background model
cryogenic detectors
Astronomical and Space Sciences
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Nuclear & Particles Physics
Astronomical sciences
Nuclear and plasma physics
Particle and high energy physics
Language
Abstract
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrino-less double-beta (0νββ) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its second result of the search for 0νββ corresponding to a TeO2 exposure of 372.5 kgyr and a median exclusion sensitivity to a 130Te 0νββ decay half-life of 1.7 1025 yr. We find no evidence for 0νββ decay and set a 90% C.I. Bayesian lower limit of 3.2 1025 yr on the 130Te 0νββ decay half-life. We present the current status of CUORE's search for 0νββ. We give an update of the CUORE background model and the measurement of the 130Te two neutrino double-beta (2νββ) decay half-life. Eventually, we show the preliminary results on half-life limits from the analysis of 130Te 0νββ and 2νββ decay to the first 0+ excited state of 130Xe.