학술논문

Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort)
Document Type
article
Source
Subject
Biomedical and Clinical Sciences
Environmental Sciences
Pollution and Contamination
Social Determinants of Health
Health Effects of Indoor Air Pollution
Clinical Research
Endocrine Disruptors
Good Health and Well Being
Adult
California
Cohort Studies
Dust
Environmental Pollutants
Female
Flame Retardants
Halogenated Diphenyl Ethers
Humans
Organophosphates
Phosphates
Pregnancy
Urine
Young Adult
Flame retardants
Exposure
Pregnant women
Urinary metabolites
Meteorology & Atmospheric Sciences
Language
Abstract
Organophosphate flame retardants (PFRs), used in consumer products since the 1970s, persist in the environment. Restrictions on penta-polybrominated diphenyl ether (PBDE) flame retardants resulted in increased use of Firemaster® 550 (FM® 550), and the organophosphate triesters: tris(1,3- dichloro-2-propyl) phosphate (TDCIPP); tris(chloropropyl) phosphate (TCIPP); tris(2-chloroethyl) phosphate (TCEP); and triphenyl phosphate (TPHP). The objectives of this study were to (1) identify determinants of flame retardants (4 PFRs, PentaBDEs and FM® 550) in house dust, (2) measure urinary PFR metabolites in pregnant women, and (3) estimate health risks from PFR exposure. We measured flame retardants in house dust (n = 125) and metabolites in urine (n = 310) collected in 2000-2001 from Mexican American women participating in the CHAMACOS birth cohort study in California. We detected FM® 550 and PFRs, including two (TCEP and TDCIPP) known to the state of California to cause cancer, in most dust samples. The maximum TCEP and TDCIPP dust levels were among the highest ever reported although the median levels were generally lower compared to other U.S. cohorts. Metabolites of TDCIPP (BDCIPP: bis(1,3-dichloro-2-propyl) phosphate) and TPHP (DPHP: diphenyl phosphate) were detected in 78% and 79% of prenatal urine samples, respectively. We found a weak but positive correlation between TPHP in dust and DPHP in 124 paired prenatal urine samples (Spearman rho = 0.17; p = 0.06). These results provide information on PFR exposure and risk in pregnant women from the early 2000's and are also valuable to assess trends in exposure and risk given changing fire safety regulations and concomitant changes in chemical flame retardant use.