학술논문

Atomistic simulations of thermal conductivity in GeTe nanowires
Document Type
article
Source
Journal of Physics D. 53(5)
Subject
phase change materials
nanowires
neural networks
thermal transport
molecular
dynamics simulations
Physical Sciences
Engineering
Applied Physics
Language
Abstract
The thermal conductivity of GeTe crystalline nanowires has been computed by means of non-equilibrium molecular dynamics simulations employing a machine learning interatomic potential. This material is of interest for application in phase change non-volatile memories. The resulting lattice thermal conductivity of an ultrathin nanowire (7.3 nm diameter) of 1.57 W m-1 K-1 is sizably lower than the corresponding bulk value of 3.15 W m-1 K-1 obtained within the same framework. The analysis of the phonon dispersion relations and lifetimes reveals that the lower thermal conductivity in the nanowire is mostly due to a reduction in the phonon group velocities. We further predict the presence of a minimum in the lattice thermal conductivity for thicker nanowires.