학술논문

Dopamine subsystems that track internal states
Document Type
article
Source
Nature. 608(7922)
Subject
Biological Psychology
Biomedical and Clinical Sciences
Psychology
Neurosciences
Basic Behavioral and Social Science
Digestive Diseases
Behavioral and Social Science
Animals
Cues
Digestion
Dopamine
Dopaminergic Neurons
Eating
Gastrointestinal Tract
Hypothalamus
Mesencephalon
Mice
Neural Pathways
Nutrients
Organism Hydration Status
Reward
Time Factors
Ventral Tegmental Area
Water
Water-Electrolyte Balance
General Science & Technology
Language
Abstract
Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.