학술논문

Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water.
Document Type
article
Source
Environmental Health Perspectives. 104(11)
Subject
Adult
Aged
Aged
80 and over
Arsenic
Arsenicals
Biotransformation
Cacodylic Acid
Chile
Female
Humans
Male
Methylation
Middle Aged
Water Pollutants
Water Supply
Language
Abstract
Inorganic arsenic (In-As), an occupational and environmental human carcinogen, undergoes biomethylation to monomethylarsonate (MMA) and dimethylarsinate (DMA). It has been proposed that saturation of methylation capacity at high exposure levels may lead to a threshold for the carcinogenicity of In-As. The relative distribution of urinary In-As, MMA, and DMA is used as a measure of human methylation capacity. The most common pathway for elevated environmental exposure to In-As worldwide is through drinking water. We conducted a biomarker study in northern Chile of a population chronically exposed to water naturally contaminated with high arsenic content (600 micrograms/l). In this paper we present the results of a prospective follow-up of 73 exposed individuals, who were provided with water of lower arsenic content (45 micrograms/l) for 2 months. The proportions of In-As, MMA, and DMA in urine were compared before and after intervention, and the effect of other factors on the distribution of arsenic metabolites was also analyzed. The findings of this study indicate that the decrease in arsenic exposure was associated with a small decrease in the percent In-As in urine (from 17.8% to 14.6%) and in the MMA/DMA ratio (from 0.23 to 0.18). Other factors such as smoking, gender, age, years of residence, and ethnicity were associated mainly with changes in the MMA/DMA ratio, with smoking having the strongest effect. Nevertheless, the factors investigated accounted for only about 20% of the large interindividual variability observed. Genetic polymorphisms in As-methylating enzymes and other co-factors are likely to contribute to some of the unexplained variation. The changes observed in the percent In-As and in the MMA/DMA ratio do not support an exposure-based threshold for arsenic methylation in humans.