학술논문

Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission
Document Type
article
Source
Cell Host & Microbe. 30(3)
Subject
Medical Microbiology
Biomedical and Clinical Sciences
Emerging Infectious Diseases
Lung
Prevention
Biodefense
Vaccine Related
Aetiology
2.2 Factors relating to the physical environment
Infection
Good Health and Well Being
COVID-19
Humans
Mutation
SARS-CoV-2
Spike Glycoprotein
Coronavirus
H655Y mutation
fusion
gamma
omicron
spike cleavage
syncytia formation
variants of concern
Microbiology
Immunology
Biochemistry and cell biology
Medical microbiology
Language
Abstract
SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.