학술논문

Paramagnetic Fluorinated Nanoemulsions for in vivo F-19 MRI
Document Type
article
Source
Molecular Imaging and Biology. 22(3)
Subject
Medical Biotechnology
Biomedical and Clinical Sciences
Prevention
Bioengineering
Biomedical Imaging
Nanotechnology
Animals
Cell Line
Disease Models
Animal
Emulsions
Female
Ferric Compounds
Fluorine-19 Magnetic Resonance Imaging
Fluorocarbons
Inflammation
Macrophages
Magnetic Resonance Imaging
Mice
Mice
Inbred C57BL
Nanostructures
Polymers
MRI
Fluorine-19
Iron
Chelate
Perfluorocarbon
Nanoemulsion
Macrophage
In vivo
Physiology
Clinical Sciences
Nuclear Medicine & Medical Imaging
Clinical sciences
Language
Abstract
PurposeWe aim to develop perfluorocarbon-based nanoemulsions with improved sensitivity for detection of inflammatory macrophages in situ using F-19 MRI. Towards this goal, we evaluate the feasibility of nanoemulsion formulation incorporating a metal chelate in the fluorous phase which shortens the F-19 longitudinal relaxation rate and image acquisition time.ProceduresPerfluorinated linear polymers were conjugated to metal-binding tris-diketonate, blended with unconjugated polymers, and emulsified in water. Phospholipid-based surfactant was used to stabilize nanoemulsion and provide biocompatibility. Nanoemulsions were metalated with the addition of ferric salt to the buffer. Physical stability of surfactant and nanoemulsion was evaluated by mass spectrometry and dynamic light scattering measurements. Nanoemulsions were injected intravenously into a murine granuloma inflammation model, and in vivo19F/1H MRI at 11.7 T was performed.ResultsWe demonstrated stability and biocompatibility of lipid-based paramagnetic nanoemulsions. We investigated potential oxidation of lipid in the presence of metal chelate. As a proof of concept, we performed non-invasive monitoring of macrophage burden in a murine inflammation model following intravenous injection of nanoemulsion using in vivo F-19 MRI.ConclusionLipid-based nanoemulsion probes of perfluorocarbon synthesized with iron-binding fluorinated β-diketones can be formulated for intravenous delivery and inflammation detection in vivo.