학술논문

Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1
Document Type
article
Source
European Physical Journal C. 77(7)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Physical Sciences
ATLAS Collaboration
hep-ex
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Quantum Physics
Nuclear & Particles Physics
Astronomical sciences
Atomic
molecular and optical physics
Particle and high energy physics
Language
Abstract
The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.