학술논문

Multicolour fluorescence in situ hybridization analysis of t(14;18)-positive follicular lymphoma and correlation with gene expression data and clinical outcome
Document Type
Academic Journal
Source
British Journal of Haematology. Sep 01, 2003 122(5):745-759
Subject
Language
English
ISSN
0007-1048
Abstract
In order fully to identify secondary chromosomal alterations, such as duplications, additions and marker chromosomes that remained unresolved by G banding, 60 cases of t(14;18)-positive follicular lymphoma (FL) were analysed by multicolour karyotyping techniques [multicolour fluorescence in situ hybridization (MFISH)/multicolour banding for chromosome 1 (MBAND1)]. A total of 165 additional structural chromosomal aberrations were delineated. An increased frequency of chromosomal gains involving X, 1q, 2, 3q27-q29, 5, 6p11-p21, 7, 8, 11, 12, 14q32, 17q, 18 and 21 and deletions of 1p36, 3q28-q29, 6q, 10q22-q24 and 17p11-p13 was revealed by the MFISH/MBAND1 analysis. Balanced translocations other than t(14;18) were uncommon, whereas unbalanced translocations were numerous. Deletion of 1p36 and duplication of 1p33-p35, 1p12-p21 and 1q21-q41 were regularly involved in chromosome 1 alterations, seen in 53% of the cases. A strong correlation was demonstrated between gains of individual chromosomal bands and increased gene expression, including 1q22/MNDA, 6p21/CDKN1A, 12q13-q14/SAS, 17q23/ZNF161, 18q21/BCL2 and Xq13/IL2RG. Unfavourable overall survival was associated with del(1)(p36) and dup(18q). These data support the notion that translocation events are primarily responsible for FL disease initiation, whereas the unbalanced chromosomal gains and losses that mirror the gene expression patterns characterize clonal evolution and disease progression, and thus provide further insights into the biology of FL.