학술논문

MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia
Document Type
Academic Journal
Source
Oncogene. Aug 04, 2011 30(31):3416-3428
Subject
Language
English
ISSN
0950-9232
Abstract
Aberrant activation of c-kit proto-oncogene contributes to abnormal cell proliferation by altering the tyrosine kinase signaling and constitutes a crucial impetus for leukemogenesis. Epigenetic silencing of tumor-suppressive micro-RNAs (miRNAs) is a key oncogenic mechanism for the activation of oncogenes in tumors. In this study, several miRNAs potentially binding to the 3′-untranslated region of human c-kit mRNA were screened by luciferase reporter assays. Among these miRNAs, miR-193a was embedded in a CpG island and epigenetically repressed by promoter hypermethylation in acute myeloid leukemia (AML) cell lines and primary AML blasts, but not in normal bone marrow cells. Importantly, miR-193a levels were inversely correlated with c-kit levels measured in 9 leukemia cell lines and 27 primary AML samples. Restoring miR-193a expression in AML cells harboring c-kit mutation and/or overexpression, either by synthetic miR-193a transfection or by DNA hypomethylating agent 5-azacytidine (5-aza) treatment, resulted in a significant reduction in c-kit expression at both RNA and protein levels and inhibition of cell growth. The growth-inhibitory activity of miR-193a was associated with apoptosis and granulocytic differentiation. Moreover, 5-aza-induced c-kit reduction could be partially blocked by miR-193a inhibitor, leading to a reversal of antiproliferative and proapoptotic effects of 5-aza. These data reveal a critical role for methylation-repressed miR-193a in myeloid leukemogenesis and the therapeutic promise of upregulating miR-193a expression for c-kit-positive AML.