학술논문

Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein
Document Type
Academic Journal
Source
Nature. Mar 30, 2017 543(7647):738-741
Subject
Language
English
ISSN
0028-0836
Abstract
Double electron-electron resonance and computer simulations are used to describe conformational dynamics in the ATP-binding cassette transporter Pgp, which has an important role in the clearance of xenobiotics and cancer resistance to chemotherapy. : ATP binding cassette (ABC) transporters of the exporter class harness the energy of ATP hydrolysis in the nucleotide-binding domains (NBDs) to power the energetically uphill efflux of substrates by a dedicated transmembrane domain (TMD). Although numerous investigations have described the mechanism of ATP hydrolysis and defined the architecture of ABC exporters, a detailed structural dynamic understanding of the transduction of ATP energy to the work of substrate translocation remains elusive. Here we used double electron-electron resonance and molecular dynamics simulations to describe the ATP- and substrate-coupled conformational cycle of the mouse ABC efflux transporter P-glycoprotein (Pgp; also known as ABCB1), which has a central role in the clearance of xenobiotics and in cancer resistance to chemotherapy. Pairs of spin labels were introduced at residues selected to track the putative inward-facing to outward-facing transition. Our findings illuminate how ATP energy is harnessed in the NBDs in a two-stroke cycle and elucidate the consequent conformational motion that reconfigures the TMD, two critical aspects of Pgp transport mechanism. Along with a fully atomistic model of the outward-facing conformation in membranes, the insight into Pgp conformational dynamics harmonizes mechanistic and structural data into a novel perspective on ATP-coupled transport and reveals mechanistic divergence within the efflux class of ABC transporters.