학술논문

Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans
Document Type
Academic Journal
Source
Journal of Neurochemistry. Dec 01, 2013 127(6):837-851
Subject
Language
English
ISSN
0022-3042
Abstract
ABSTRACT: Epidemiological studies corroborate a correlation between pesticide use and Parkinsonʼs disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. : A correlation exists between pesticide use and Parkinsonʼs disease. We investigated the ability of thiocarbamate pesticides to induce dopaminergic neurodegeneration in Caenorhabditis elegans. Treatment with thiocarbamates led to selective loss of dopaminergic cell morphology, and decreased dopamine content and dopaminergic-dependent behavior. Our data suggest that thiocarbamate pesticides may be environmental risk factors for Parkinsonʼs disease.(Figure is included in full-text article.)J. Neurochem. (2013) 127, 837–851.