학술논문

Ghrelin-Related Peptides Exert Protective Effects in the Cerebral Circulation of Male Mice Through a Nonclassical Ghrelin Receptor(s)
Document Type
Academic Journal
Source
Endocrinology. Jan 01, 2015 156(1):280-290
Subject
Language
English
ISSN
0013-7227
Abstract
The ghrelin-related peptides, acylated ghrelin, des-acylated ghrelin, and obestatin, are novel gastrointestinal hormones. We firstly investigated whether the ghrelin gene, ghrelin O-acyltransferase, and the ghrelin receptor (GH secretagogue receptor 1a [GHSR1a]) are expressed in mouse cerebral arteries. Secondly, we assessed the cerebrovascular actions of ghrelin-related peptides by examining their effects on vasodilator nitric oxide (NO) and superoxide production. Using RT-PCR, we found the ghrelin gene and ghrelin O-acyltransferase to be expressed at negligible levels in cerebral arteries from male wild-type mice. mRNA expression of GHSR1a was also found to be low in cerebral arteries, and GHSR protein was undetectable in GHSR-enhanced green fluorescent protein mice. We next found that exogenous acylated ghrelin had no effect on the tone of perfused cerebral arteries or superoxide production. By contrast, exogenous des-acylated ghrelin or obestatin elicited powerful vasodilator responses (EC50 < 10 pmol/L) that were abolished by the NO synthase inhibitor N-nitro-L-arginine methyl ester. Furthermore, exogenous des-acylated ghrelin suppressed superoxide production in cerebral arteries. Consistent with our GHSR expression data, vasodilator effects of des-acylated ghrelin or obestatin were sustained in the presence of YIL-781 (GHSR1a antagonist) and in arteries from Ghsr-deficient mice. Using ghrelin-deficient (Ghrl) mice, we also found that endogenous production of ghrelin-related peptides regulates NO bioactivity and superoxide levels in the cerebral circulation. Specifically, we show that NO bioactivity was markedly reduced in Ghrl vs wild-type mice, and superoxide levels were elevated. These findings reveal protective actions of exogenous and endogenous ghrelin-related peptides in the cerebral circulation and show the existence of a novel ghrelin receptor(s) in the cerebral endothelium.