학술논문

Massive accumulation of Man2GlcNAc2-Asn in nonneuronal tissues of glycosylasparaginase-deficient mice and its removal by enzyme replacement therapy
Document Type
Academic Journal
Source
Glycobiology. Jan 01, 2005 15(1):79-85
Subject
Language
English
ISSN
0959-6658
Abstract
Aspartylglycosaminuria (AGU) is caused by deficient enzymatic activity of glycosylasparaginase (GA). The disease is characterized by accumulation of aspartylglucosamine (GlcNAc-Asn) and other glycoasparagines in tissues and body fluids of AGU patients and in an AGU mouse model. In the current study, we characterized a glycoasparagine carrying the tetrasaccharide moiety of α-D-Man-(1→6)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→N)-Asn (Man2GlcNAc2-Asn) in urine of an AGU patient and also in the tissues of the AGU mouse model. Quantitative analysis demonstrated a massive accumulation of the compound especially in nonneuronal tissues of the AGU mice, in which the levels of Man2GlcNAc2-Asn were typically 30–87% of those of GlcNAc-Asn. The highest level of Man2GlcNAc2-Asn was found in the liver, spleen, and heart tissues of the AGU mice, the respective amounts being 87%, 76%, and 57% of the GlcNAc-Asn levels. In the brain tissue of AGU mice the Man2GlcNAc2-Asn storage was only 9% of that of GlcNAc-Asn. In contrast to GlcNAc-Asn, the storage of Man2GlcNAc2-Asn markedly increased in the liver and spleen tissues of AGU mice as they grew older. Enzyme replacement therapy with glycosylasparaginase for 3.5 weeks reduced the amount of Man2GlcNAc2-Asn by 66–97% in nonneuronal tissues, but only by 13% in the brain tissue of the AGU mice. In conclusion, there is evidence for a role for storage of glycoasparagines other than aspartylglucosamine in the pathogenesis of AGU, and this possibility should be taken into consideration in the treatment of the disease.