학술논문

Characterization of the Transmembrane Transport and Absolute Bioavailability of the HCV Protease Inhibitor Danoprevir
Document Type
Academic Journal
Source
Clinical Pharmacokinetics. May 01, 2015 54(5):537-549
Subject
Language
English
ISSN
0312-5963
Abstract
BACKGROUND AND OBJECTIVES: Understanding transmembrane transport provides a more complete understanding of the pharmacokinetics of a drug and mechanistic explanations for drug-drug interactions. Here, the transmembrane transport of danoprevir (hepatitis C virus protease inhibitor) and the effects of ritonavir and ciclosporin on transmembrane transport of danoprevir were evaluated and clinical pharmacokinetic studies of danoprevir coadministered with/without ritonavir and ciclosporin were conducted. METHODS: Transcellular transport of danoprevir was evaluated in Lewis lung cancer porcine kidney, Madin-Darby canine kidney, or Chinese hamster ovary cells transfected with human transport proteins, and in human hepatocytes. The pharmacokinetics of intravenous and oral danoprevir administered with/without ritonavir, and the impact of ciclosporin on danoprevir pharmacokinetics were evaluated in randomized, open-label, crossover studies in healthy subjects. RESULTS: Danoprevir transport in vitro involved organic anion transporting polypeptide (OATP) 1B1, OATP1B3, P-glycoprotein, and multidrug resistance protein-2, but not breast cancer resistance protein. Ritonavir and ciclosporin inhibited transport of danoprevir by human hepatocytes. The pharmacokinetics of intravenous danoprevir 6 mg were not altered by oral ritonavir 100 mg. In contrast, exposure to oral danoprevir 100 mg increased two- to threefold when co-administered with ritonavir. Absolute bioavailability of danoprevir 100 mg was low (1.15 %), but increased more than threefold (3.86 %) when coadministered with ritonavir. Oral ciclosporin 100 mg increased exposure to intravenous danoprevir 2 mg and oral ritonavir 100 mg. CONCLUSION: Collectively, these studies provide insight into the transmembrane transport and pharmacokinetics of danoprevir and the mechanisms that underlie a recently reported, three-way drug-drug interaction involving danoprevir, ritonavir, and ciclosporin.