학술논문

Role of carbon monoxide in electrically induced non-adrenergic, non-cholinergic relaxations in the guinea-pig isolated whole trachea
Document Type
Academic Journal
Source
British Journal of Pharmacology. Jan 01, 2007 150(2):220-226
Subject
Language
English
ISSN
0007-1188
Abstract
BACKGROUND AND PURPOSE:: Nitric oxide (NO) and vasoactive intestinal peptide (VIP) are considered transmitters of non-adrenergic, non-cholinergic (NANC) relaxations in guinea-pig trachea, whereas the role of carbon monoxide (CO) is unknown. This study was designed to assess the participation of CO, and to investigate the localization of haem oxygenase-2 (HO-2), the CO-producing enzyme, in tracheal neurons. EXPERIMENTAL APPROACH:: NANC responses to electrical field stimulation (EFS) at 3 and 10 Hz were evaluated in epithelium-free whole tracheal segments as intraluminal pressure changes. Drugs used were: L-nitroarginine methyl ester (L-NAME, 100 μ M) to inhibit NO synthase (NOS), α-chymotrypsin (2 U ml) to inactivate VIP, zinc protoporphyrin-IX (ZnPP-IX, 10 μM) to inhibit HO-2, and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM), a soluble guanylyl cyclase inhibitor. For immunohistochemistry, tissues were exposed to antibodies to PGP 9.5, a general neuronal marker, HO-2 and NOS, and processed with an indirect immunofluorescence method. KEY RESULTS:: α-Chymotrypsin did not affect NANC relaxations. ODQ inhibited NANC responses by about 60%, a value similar to that obtained by combining L-NAME and ZnPP-IX. The combination of ODQ, L-NAME and ZnPP-IX reduced the responses by 90%. Subpopulations of HO-2 positive neurons containing NOS were detected in tracheal sections. CONCLUSIONS AND IMPLICATIONS:: In the guinea-pig trachea, NANC inhibitory responses at 3 and 10 Hz use NO and CO as main transmitters. Their participation is revealed following inhibition of NOS, HO-2 and soluble guanylyl cyclase. The involvement of CO as a relaxing transmitter paves the way for novel therapeutic approaches in the treatment of airway obstruction.