학술논문

SuperCDMS HVeV Run 2 Low-Mass Dark Matter Search, Highly Multiplexed Phonon-Mediated Particle Detector with Kinetic Inductance Detector, and the Blackbody Radiation in Cryogenic Experiments
Document Type
Electronic Resource
Source
Subject
Thesis
NonPeerReviewed
Language
Abstract
There is ample evidence of dark matter (DM), a phenomenon responsible for ≈ 85% of the matter content of the Universe that cannot be explained by the Standard Model (SM). One of the most compelling hypotheses is that DM consists of beyond-SM particle(s) that are nonluminous and nonbaryonic. So far, numerous efforts have been made to search for particle DM, and yet none has yielded an unambiguous observation of DM particles. We present in Chapter 2 the SuperCDMS HVeV Run 2 experiment, where we search for DM in the mass ranges of 0.5--10⁴ MeV/c² for the electron-recoil DM and 1.2--50 eV/c² for the dark photon and the Axion-like particle (ALP). SuperCDMS utilizes cryogenic crystals as detectors to search for DM interaction with the crystal atoms. The interaction is detected in the form of recoil energy mediated by phonons. In the HVeV project, we look for electron recoil, where we enhance the signal by the Neganov-Trofimov-Luke effect under high-voltage biases. The technique enabled us to detect quantized e⁻h⁺ creation at a 3% ionization energy resolution. Our work is the first DM search analysis considering charge trapping and impact ionization effects for solid-state detectors. We report our results as upper limits for the assumed particle models as functions of DM mass. Our results exclude the DM-electron scattering cross section, the dark photon kinetic mixing parameter, and the ALP axioelectric coupling above 8.4 x 10⁻³⁴ cm², 3.3 x 10⁻¹⁴, and 1.0 x 10⁻⁹, respectively. Currently every SuperCDMS detector is equipped with a few phonon sensors based on the transition-edge sensor (TES) technology. In order to improve phonon-mediated particle detectors' background rejection performance, we are developing highly multiplexed detectors utilizing kinetic inductance detectors (KIDs) as phonon sensors. This work is detailed in chapter 3 and chapter 4. We have improved our previous KID and readout line designs, which enabled us to produce our first ø3" detecto