학술논문

Megafans and Trumpeter Bird Biodiversity-Psophia Phylogeography and Landscape Evolution in Amazonia
Document Type
Report
Source
ARES Biennial Report 2012 Final.
Subject
Geophysics
Earth Resources And Remote Sensing
Life Sciences (General)
Language
English
Abstract
Based on geomorphic character and mapped geology, geologists have interpreted the landscape surrounding the Andes Mountains as becoming progressively younger to the East. These sedimentary materials filled the late Miocene swampland that formerly occupied central and western Amazonia. Apart from the ancient landscapes of the Guiana Highlands (top right, figure 1a), Zone Ac is the oldest, followed by Zone Aw, within which megafan Jw is older than megafan Je (figure 1a). DNA-based paleogeography of the trumpeters shows that younger clades diverge from parent lineages with increasing distance from the Andes chain. Thus, Psophia napensis diverges from the P. crepitans parent, and P. ochroptera diverges from P. napensis. The P. ochroptera population is confined solely to the Je megafan (figure 1a). The same trend is seen on the south side of the Amazon depression. Since the timing of the events seems to be of exactly the same order [post-Miocene for the land surfaces and trumpeter divergence within the last 3 million years (figure 1d)], it seems reasonable to think that the megafans provided the substrate on which new bird lineages could speciate. Such physical controls of evolution are becoming more important in the understanding of biodiversity.