학술논문

Freeze-Thaw Cycling as a Chemical Weathering Agent on a Cold and Icy Mars
Document Type
Report
Source
Subject
Space Sciences (General)
Language
English
Abstract
Liquid water was abundant on early Mars, but whether the climate was warm and wet or cold and icy with punctuated periods of melting is still poorly understood. Modern climate models for Mars tend to predict a colder, icier early climate than previously imagined. In addition, ice and glaciation have been major geologic agents throughout the later Hesperian and Amazonian eras. One process that can act in such climates is repeated freezing and thawing of water on the surface and in the subsurface, and is significant because it can occur anywhere with an active layer and could have persisted for a time after liquid water was no longer stable on Mars’ surface. As freeze-thaw is the dominant mechanical weathering process in most glacial/periglacial terrains, it was likely a significant geomorphologic driver at local to regional scales during past climates, and would potentially have been most active when day-average surface temperatures exceeded 0 °C for part of the year. Indeed, freeze-thaw involving liquid water in the Amazonian is evidenced by abundant geomorphic features including polygonal ground and solifluction lobes requiring seasonal thawing. In addition to physical modification, freezing can drive solutions towards supersaturation and force dissolved solutes out as precipitates. In Mars-like terrains, dissolved solutes are typically dominated by silica. In polar regions on Earth, freeze-thaw cycles have been shown to promote deposition of silica, and freeze-thaw experiments on synthetic solutions found stable amorphous silica that built up over multiple cycles. Freeze-thaw may therefore be an important but overlooked chemical weathering process on Mars. However, our ability to assess its impact on alteration of martian terrains is majorly limited by the current lack of understanding of the alteration phases produced (and formation rates) under controlled freeze-thaw weathering of Mars-relevant materials. To address this knowledge gap, we report results from (1) freeze-thaw weathering products found at a glacial Mars analog site at the Three Sisters, Oregon, and (2) new controlled freeze-thaw experiments on basaltic material.