학술논문

eXTP: Enhanced X-Ray Timing and Polarimetry Mission
Document Type
Report
Author
Zhang, S. NFeroci, MSantangelo, ADong, Y. WFeng, HLu, F. JNandra, KWang, Z. SZhang, SBozzo, EBrandt, SDe Rosa, AGou, L. JHernanz, MVan der Klis, MLI, X. DLiu, YOrleanski, PPareschi, GPohl, MPoutanen, JQu, J. LSchanne, SStella, LUttley, PWatts, AXu, R. XYu, W. FIn 't Zand, J. J. MZane, SAlvarez, LAmati, LBaldini, LBambi, CBasso, SBhattacharyya, SBellazzini, RBelloni, TBellutti, PBianchi, SBrez, ABursa, MBurwitz, VTagliaferri, GBudtz-Jorgensen, CCaiazzo, ICampana, RCao, X. LCasella, PChen, C. YChen, LChen, T. XChen, YChen, Y. PCivitani, MCoti Zelati, FCui, WCui, W. WDai, Z. GDel Monte, EDe Martino, DDi Cosimo, SDiebold, SDovciak, MDonnarumma, IDoroshenko, VEsposito, PEvangelista, YFavre, YFriedrich, PFuschino, FGalvez, J. LGao, Z. LGe, M. YGevin, OGoetz, DHan, D. WHeyl, JHorak, JHu, WHuang, FHuang, Q. SHudec, RHuppenkothen. DIsrael, G. LIngram, AKaras, VKarelin, DJenke, P. AJi, LKennedy, TKorpela, SKunneriath, DLabanti, CLi, GLi, XLi, Z. SLiang, E. WLimousin, OLin, LLing, Z. XLiu, H. BLiu, H. WLiu, ZLu, BLund, NLai, DLuo, BLuo, TMa, BMahmoodifar, SMarisaldi, MMartindale, AMeidinger, NMen, Y. PMichalska, MMignani, RMinuti, MMotta, SMuleri, FNeilsen, JOrlandini, MPan, A. TPatruno, APerinati, EPicciotto, APiemonte, CPinchera, MRachevski, ARapisarda, MRea, NRossi, E. M. RRubini, ASala, GShu, X. WSgro, CShen, Z. XSoffitta, PSong, L. MSpandre, GStratta, GStrohmayer, T. ESun, LSvoboda, JTenzer, CTong, HTaverna, RTorok, GTurolla, RVacchi, AWang, JWang, J. XWalton, DWang, KWang, J. FWang, R. JWang, Y. FWeng, S. SWilms, JWinter, BWu, XWu, X. FXiong, S. LXu, Y. PXue, Y. QYan, ZYang, SYang, XYang, Y. JYuan, FYuan, W. MYuan, Y. FZampa, GZampa, NZdziarski, AZhang, CZhang, C. LZhang, LZhang, XZhang, ZZhang, W. DZheng, S. JZhou, PZhou, X. L
Source
Proceedings of SPIE. 9905
Subject
Astrophysics
Language
English
ISSN
1996-756X
0277-786X
Abstract
eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of approx. 0.9 m(exp. 2) and 0.6 m(exp. 2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering less than 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of approx. 3.4 m(exp. 2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(exp. 2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.