학술논문

Substitution Effects and Linear Free Energy Relationships During Reduction of 4- Benzoyl-n-(4-substituted Benzyl)pyridinium Cations
Document Type
Report
Source
Subject
Inorganic, Organic And Physical Chemistry
Language
English
Abstract
In analogy to 4-(para-substituted benzoyl)-N-methylpyridinium cations (1-X's), the title species (2-X's, -X = -OCH3, -CH3, -H, -Br, -COCH3, -NO2) undergo two reversible, well-separated (E(sub 1/2) greater than or equal to 650 mV) one-electron reductions. The effect of substitution on the reduction potentials of 2-X's is much weaker than the effect of the same substituents on 1-X's: the Hammett rho-values are 0.80 and 0.93 for the 1st- and 2nd-e reduction of 2-X's vs. 2.3 and 3.3 for the same reductions of 1-X's, respectively. Importantly, the nitro group of 2-NO2 undergoes reduction before the 2nd-e reduction of the 4-benzoylpyridinium system. These results suggest that the redox potentials of the 4-benzoylpyridinium system can be course-tuned via p-benzoyl substitution and fine-tuned via para-benzyl substitution. Introducing the recently derived substituent constant of the -NO2(sup)- group (sigma para-NO2(sup)- = -0.97) yields an excellent correlation for the 3rd-e reduction of 2- NO2 (corresponding to the reduction of the carbonyl group) with the 2nd-e reduction of the other 2-X's, and confirms the electron donating properties of -NO2(sup)-.