학술논문

Surface Processes of Faceted Growth
Document Type
Report
Source
Subject
Solid-State Physics
Language
English
Abstract
Atomic force microscopy and high precision optical interferometry allow to analyze the processes that are in the core of our present understanding of faceted crystal growth. Some of these processes will be reviewed. Recent experiments suggest that the Gibbs-Thomson Law (GTL) may not be applicable to the weakly fluctuating strongly polygonized steps, with low kink density. Propagation rate of a straight short step segment changes with the segment length much steeper than predicted by GTL. If the step fluctuations are still well developed, the typical transition length may be determined just by the radius of rounded comers of the polygonized step. If fluctuations do not have enough time to develop, the kinetic effects may be essential. Indeed, 'communications' between comers of a short straight step segment may occur and, thus, the GTL may be implemented only via kink exchange. E.g., dissolutions of this short segment at macroscopic equilibrium occurs as follows: The kinks are split from one comer as a result of fluctuations, and annihilate with kinks of the opposite sign generated by another comer. Similarly, an exchange via chain of kinks on a rough step is the mechanism to implement the GT Law. If there is a supersaturation with respect to a large crystal, the kinks not only diffuse along the step, but move back the generating comers. This 'wind' prevents communication between the comers and places upper limit supersaturation only below which GTL is applicable. Steps replace kinks in the 3D case, though, of course, another dimensionality brings about another physics. Another specific problem to think about is if fluctuations are always fast enough to provide enough kinks for linear dependence of step rate on supersaturation. Increasing azimuthal polygonization of growth hillocks is a sign of insufficient fluctuation rate. Morphological stability of vicinal faces is usually considered on the basis of mutually parallel steps. Azimuthal anisotropy and interlacing of step bunches inducing the well known bunch splitting is another challenge. Among other challenging problems are: existence of surface diffusion on the crystal/so1ution interface, step interaction in solutions, achievement of step flow modes from liquids, impurity effects. New phenomena essential in biomacromolecular crystallization is another interesting area.