학술논문

Characterization of Transport Errors in Chemical Forecasts from a Global Tropospheric Chemical Transport Model
Document Type
Report
Source
Subject
Geophysics
Language
English
Abstract
We propose a new methodology to characterize errors in the representation of transport processes in chemical transport models. We constrain the evaluation of a global three-dimensional chemical transport model (GEOS-CHEM) with an extended dataset of carbon monoxide (CO) concentrations obtained during the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft campaign. The TRACEP mission took place over the western Pacific, a region frequently impacted by continental outflow associated with different synoptic-scale weather systems (such as cold fronts) and deep convection, and thus provides a valuable dataset. for our analysis. Model simulations using both forecast and assimilated meteorology are examined. Background CO concentrations are computed as a function of latitude and altitude and subsequently subtracted from both the observed and the model datasets to focus on the ability of the model to simulate variability on a synoptic scale. Different sampling strategies (i.e., spatial displacement and smoothing) are applied along the flight tracks to search for systematic model biases. Statistical quantities such as correlation coefficient and centered root-mean-square difference are computed between the simulated and the observed fields and are further inter-compared using Taylor diagrams. We find no systematic bias in the model for the TRACE-P region when we consider the entire dataset (i.e., from the surface to 12 km ). This result indicates that the transport error in our model is globally unbiased, which has important implications for using the model to conduct inverse modeling studies. Using the First-Look assimilated meteorology only provides little improvement of the correlation, in comparison with the forecast meteorology. These general statements can be refined when the entire dataset is divided into different vertical domains, i.e., the lower troposphere (less than 2 km), the middle troposphere (2-6 km), and the upper troposphere (greater than 6 km). The best agreement between the observations and the model is found in the lower and middle troposphere. Downward displacements in the lower troposphere provide a better fit with the observed value, which could indicate a problem in the representation of boundary layer height in the model. Significant improvement is also found for downward and southward displacements in the upper troposphere. There are several potential sources of errors in our simulation of the continental outflow in the upper troposphere which could lead to such biases, including the location and/or the strength of deep convective cells as well as that of wildfires in Southeast Asia.