학술논문

Design, Modeling, and Evaluation of a Compact and Lightweight Needle End-effector with Simple Force-feedback Implementation for Robotic CT-guided Needle Interventions
Document Type
Article
Source
(2022): 85-101.
Subject
Language
Korean
ISSN
15986446
Abstract
We present a compact and lightweight two degrees-of-freedom (DOF) needle end-effector to be applied to a teleoperated needle interventional robotic system. The suggested needle end-effector is computerized tomography (CT)- compatible and easy to sterilize. Because the proposed needle end-effector can be attached to a robotic manipulator, the needle can translate into and rotate in the human body. In addition, a 1-axis load cell is attached to the needle end-effector to measure the longitudinal force applied to the needle. With this force measurement, force-feedback ability has been implemented in the entire master-slave robotic system. Basic performance tests of repeatability and maximum insertion force were performed. Several force-feedback experiments to determine free space response and contact response, as well as a discrimination test, were conducted. Through this verification process, the suggested needle end-effector was found to have potential for application in real environments that require robotic CT-guided needle interventions.
We present a compact and lightweight two degrees-of-freedom (DOF) needle end-effector to be applied to a teleoperated needle interventional robotic system. The suggested needle end-effector is computerized tomography (CT)- compatible and easy to sterilize. Because the proposed needle end-effector can be attached to a robotic manipulator, the needle can translate into and rotate in the human body. In addition, a 1-axis load cell is attached to the needle end-effector to measure the longitudinal force applied to the needle. With this force measurement, force-feedback ability has been implemented in the entire master-slave robotic system. Basic performance tests of repeatability and maximum insertion force were performed. Several force-feedback experiments to determine free space response and contact response, as well as a discrimination test, were conducted. Through this verification process, the suggested needle end-effector was found to have potential for application in real environments that require robotic CT-guided needle interventions.