학술논문

Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo-Fenton degradation of Safranin-O: kinetic and thermodynamic studies
Document Type
Article
Source
Macromolecular Research, 31(7), pp.677-697 Jul, 2023
Subject
고분자공학
Language
English
ISSN
2092-7673
1598-5032
Abstract
In the current study, a novel nanomaterial called nanomagnetite/copper oxide/potassium carrageenan nanocomposite (MKCO) was fabricated to include Fenton (nanomagnetite, NM) and Fenton-like reagent (copper oxide nanoparticles, NCO) in a matrix of potassium carrageenan biopolymer. The prepared solid materials were characterized by different physicochemical techniques, such as TGA, N2 adsorption/desorption, SEM, TEM, XRD, DRS, pHPZC, and FTIR. The prepared MKCO showed unique properties like higher specific surface area of 652.50 m2/g, pore radius of 1.19 nm, pHPZC equals 7.80, and the presence of different surface chemical functional groups. Under various application conditions, comparative experiments between Safranin-O dye (SO) adsorption and Photo-Fenton catalytic degradation were conducted. After 24 h, MKCO had a maximum adsorption capacity of 384.61 mg/g at 42 °C, while the Photo-Fenton oxidation process took only 10 min to totally decompose 93% of SO at 21 °C. Based on the higher values of correlation coefficients, Langmuir’s adsorption model is the best-fitted adsorption model for SO onto all the prepared solid materials. Studies on SO adsorption’s kinetics and thermodynamics show that it is physisorption and that it operates according to endothermic, spontaneous, and PFO model processes. While, PFO, endothermic, and non-spontaneous processes are satisfied by the catalytic decomposition of SO. After five application cycles, MKCO demonstrated good catalyst reusability with a 3.4% decrease in degrading efficiency. For lower contaminant concentrations and shorter application times, Photo-Fenton catalytic degradation of organic pollutants is more effective than adsorption.