학술논문

3D printed MXene (Ti2AlN)/polycaprolactone composite scaffolds for in situ maxillofacial bone defect repair
Document Type
Article
Source
Journal of Industrial and Engineering Chemistry, 114(0), pp.536-548 Oct, 2022
Subject
화학공학
Language
English
ISSN
1876-794X
1226-086X
Abstract
Obtaining a safe and reliable scaffold that can be rapidly fabricated and used for clinical bone defect repairhas always been a challenge. In this study, polycaprolactone (PCL) composite scaffolds with various MXene(Ti2AlN) contents were prepared using 3D printing technology. The effects of different contents of Ti2AlNon the mechanical properties, hydrophilicity, cytocompatibility, and osteogenic differentiation abilitywere systematically studied and analysed. In vitro experiments showed that scaffolds containing 5%Ti2AlN (PCL@5#Ti2AlN) obtained the best cell adhesion and proliferation ability and significantly upregulatedthe alkaline phosphatase (ALP) level. In vivo experiments of tibial defect repair in rats showed thatthe PCL scaffold containing 5% Ti2AlN (PCL@5#Ti2AlN) could significantly promote the formation of newbone, and the experimental results of rabbit maxillofacial bone defect repair further proved that thePCL@5#Ti2AlN scaffold could effectively promote the repair of bone defects. Transcriptome analysis indicatedthat Ti2AlN may promote osteogenic differentiation by the Wnt/b-catenin signaling pathway andcalcium-binding proteins. These findings suggest that Ti2AlN/PCL composite scaffolds with improvedin situ bone repair ability represent an intelligent strategy for bone defect repair.