학술논문

Effects of nanoscale PEALD YSZ interlayer for AAO based thin film solid oxide fuel cells
Document Type
Article
Source
International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), pp.423-430 Mar, 2020
Subject
기계공학
Language
English
ISSN
2198-0810
2288-6206
Abstract
Performance of thin film solid oxide fuel cells (TF-SOFCs) were improved by inserting plasma enhanced atomic layer deposition (PEALD) of yttira-stabilized zirconia (YSZ) interlayers. By controlling the ratio between Y2O3 and ZrO2 in YSZ deposition supercycles, Y2O3 mol.% in YSZ films were changed. High Y2O3 contained PEALD YSZ interlayered cell showed higher maximum power density (123.6 mW/cm2 at 500 °C, 286.1 mW/cm2 at 550 °C) and smaller polarization resistance compared with reference Y2O3 concentrated PEALD YSZ interlayer cell. (108.5 mW/cm2 at 500 °C, 181.1 mW/cm2 at 550 °C) Exchange current densities of TF-SOFCs at 500 °C also improved ~ 59.3% at high Y2O3 concentrated PEALD YSZ interlayer cells. These phenomena caused by high density of oxygen vacancies in high Y2O3 concentrated PEALD YSZ interlayer, which helps oxygen incorporation reactions at cathode-interlayer interface. Therefore, cathodic polarization loss related with oxygen reduction reactions was decreased, and then, performance and exchange current density were improved. Results of this study imply that insertion of simple PEALD YSZ interlayer at cathode-electrolyte interface efficiently improves performance and electrochemical characteristics of TF-SOFCs.