학술논문

Effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in Holstein cows
Document Type
Article
Source
Animal Bioscience, 32(5), pp.648-656 May, 2019
Subject
축산학
Language
English
ISSN
2765-0235
2765-0189
Abstract
Objective: An experiment was conducted to determine the effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in cows during the transition period. Methods: Thirty-nine Holstein dry cows were blocked and assigned randomly to three groups, fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation [NEL]/kg dry matter [DM]), a medium energy density diet (MD, 1.47 Mcal NEL/kg DM), or a low energy density diet (LD, 1.30 Mcal NEL/kg DM) prepartum; they were fed the same lactation diet to 28 days in milk (DIM). All the cows were housed in a free-stall barn and fed ad libitum. Results: The reduced energy density diets decreased the blood insulin concentration and increased nonesterified fatty acids (NEFA) concentration in the prepartum period (p<0.05). They also increased the concentrations of glucose, insulin and glucagon, and decreased the concentrations of NEFA and β-hydroxybutyrate during the first 2 weeks of lactation (p<0.05). The plasma urea nitrogen concentration of both prepartum and postpartum was not affected by dietary energy density (p>0.05). The dietary energy density had no effect on mRNA abundance of insulin receptors, leptin and peroxisome proliferator-activated receptor-γ in adipose tissue, and phosphoenolpyruvate carboxykinase, carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-α in liver during the transition period (p>0.05). The HD cows had higher mRNA abundance of hormone-sensitive lipase at 3 DIM compared with the MD cows and LD cows (p = 0.001). The mRNA abundance of hepatic pyruvate carboxykinase at 3 DIM tended to be increased by the reduced energy density of the close-up diets (p = 0.08). Conclusion: The reduced energy density diet prepartum was effective in controlling adipose tissue mobilization and improving the capacity of hepatic gluconeogenesis postpartum.