학술논문

Anisotropic Swelling Behavior of Hot-extruded Beryllium
Document Type
Article
Source
Journal of the Korean Physical Society, 68(8), pp.1019-1023 Apr, 2016
Subject
물리학
Language
English
ISSN
1976-8524
0374-4884
Abstract
The lifetime of beryllium reflector assemblies is usually determined by neutron irradiation induced swelling, which results in mechanical interferences or fractures of the beryllium elements. Therefore, the dimensional stability and microstructure variations of beryllium during irradiation are important issues to study. In this paper, the microstructure characteristics of S-200-F and EHP-56 beryllium blocks, which were manufactured by using vacuum hot pressing (VHP) and hot extrusion (HE), respectively, were investigated. BeO distributions, grain shapes, and preferred orientations were investigated by using SEM-EPMA and SEM-EBSD systems. Dissimilarly to S-200-F, a strong fiber texture developed in the EHP-56 during the HE process; the basal planes in the majority of grains were arranged along the extrusion direction. To emulate the microstructure evolution during neutron irradiation, we irradiated the electro-polished surface of EHP-56 with protons at room temperature, where the acceleration voltage and the number of protons were 120 keV and 2.0 × 1018 ions/cm2, respectively. Irradiation-induced cavities were observed to be considerably longer along the basal plane in the EHP-56 specimen. Correspondingly, the amount of dimensional change was smaller along the direction parallel to the basal plane.