학술논문

The design of a semi-additive manufacturing shape using metal 3D printing for a partially strengthened mold based on a high-alloy tool steel powder
Document Type
Article
Source
Journal of Mechanical Science and Technology, 34(10), pp.4149-4159 Oct, 2020
Subject
기계공학
Language
English
ISSN
1976-3824
1738-494X
Abstract
In this paper, describe the fabrication of high strength punch molds that can be applied to ultra-high strength sheet materials after processing. A method for improving the strength of the punching die by additive manufacturing (AM) of a high strength powder material using a metal 3D printer was proposed. Furthermore, a semi-additive technique was proposed to increase the punch strength through partial AM of specific parts of the punch that require high strength. A preprocessing process for predicting the semi-additive shape for the punch function portion is proposed for application of the AM technology of a metal 3D printer to this semi-additive technique. The preprocessing for determining the semi-additive shape consists of the predicting step of the punch strength based on the shear process of the sheet material, analyzing step the stress distribution of the punch, defining step the semi-additive range, designing step the semi-additive shape, and verifying step the additive interface strength. Based on this simulation, the range of shapes for the semi-additive was 1.21 mm and 2.62 mm for sheet material CP1180 and 1.3 mm and 3.2 mm for sheet material 22MnB5. The shape and range determined in the simulation process defines a semi-additive area (volume) for the 3D printing AM technique using a high-strength powder material, and a semi-additive punch was manufactured according to the defined area. The semi-additive punch (HWS powder material) fabricated in this study was performed a durability test for validity verification in the piercing process of high-strength sheet material (CR980). This validation test compared the state of the punch after 1000 piercing processes with a typical cold piercing punch (SKD11 solid material). From this test, the feasibility of the semi-additive punch was confirmed by showing a similar state of scratches and abrasion from the two punches. The simulation analysis processor for the additive shape and the additive range prediction for the semi-additive punch manufacturing presented in this paper can be useful for the additive manufacture of cutting and trimming punch mold.