학술논문

Reduced fertility caused by meiotic defects and micronuclei formation during microsporogenesis in xBrassicoraphanus
Document Type
Article
Source
Genes & Genomics, 43(3), pp.251-258 Mar, 2021
Subject
생물학
Language
English
ISSN
2092-9293
1976-9571
Abstract
Background Hybridization and polyploidization events are important driving forces in plant evolution. Allopolyploids formed between diferent species can be naturally or artifcially created but often sufer from genetic instability and infertility in successive generations. xBrassicoraphanus is an intergeneric allopolyploid obtained from a cross between Brassica rapa and Raphanus sativus, providing a useful resource for genetic and genomic study in hybrid species. Objective The current study aims to understand the cause of hybrid sterility and pollen abnormality in diferent lines of synthetic xBrassicoraphanus from the cytogenetic perspective. Methods Alexander staining was used to assess the pollen viability. Cytogenetic analysis was employed to monitor meiotic chromosome behaviors in pollen mother cells (PMCs). Origins of parental chromosomes in xBrassicoraphanus meiocytes were determined by genome in situ hybridization analysis. Results The xBrassicoraphanus lines BB#4 and BB#6 showed high rates of seed abortion and pollen deformation. Abnormal chromosome behaviors were observed in their PMCs, frequently forming univalents and inter-chromosomal bridges during meiosis. A positive correlation also exists between meiotic defects and the formation of micronuclei, which is conceivably responsible for unbalanced gamete production and pollen sterility. Conclusion These results suggest that unequal segregation of meiotic chromosomes, due in part to non-homologous interactions, is responsible for micronuclei and unbalanced gamete formation, eventually leading to pollen degeneration and inferior fertility in unstable xBrassicoraphanus lines.