학술논문

Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading
Document Type
Article
Source
Steel and Composite Structures, An International Journal, 25(3), pp.375-388 Oct, 2017
Subject
토목공학
Language
English
ISSN
1598-6233
1229-9367
Abstract
This paper presents a combined experimental, numerical, and analytical study on elliptical concrete-filled steel tubular (E-CFT) and rebar-stiffened elliptical concrete-filled steel tubular (RE-CFT) subjected to axial loading. ABAQUS was used to establish 3D finite element (FE) models for the composite columns and the FE results agreed well with the experimental results. It was found that the ultimate load-bearing capacity of RE-CFT stub columns was 20% higher than that of the E-CFT stub columns. Such improvement was attributed to the reinforcement effects from the internal rebar-stiffeners, which effectively enhanced the confinement effect on the core concrete, thereby significantly improved both the ultimate bearing capacity and the ductility of the E-CFT columns. Based on the results, equations were also established in this paper to predict the bearing capacities of E-CFT and RE-CFT stub columns under axial loading. The predicted results agreed well with both experimental and numerical results, and had much higher accuracy than other available methods.