학술논문

Estimation of Input Material Accounting Uncertainty With Double-Stage Homogenization in Pyroprocessing
Document Type
Article
Source
Journal of Nuclear Fuel Cycle and Waste Technology, 20(1), pp.23-32 Mar, 2022
Subject
원자력공학
Language
English
ISSN
2288-5471
1738-1894
Abstract
Pyroprocessing is a promising technology for managing spent nuclear fuel. The nuclear material accounting of feed material is a challenging issue in safeguarding pyroprocessing facilities. The input material in pyroprocessing is in a solid-state, unlike the solution state in an input accountability tank used in conventional wet-type reprocessing. To reduce the uncertainty of the input material accounting, a double-stage homogenization process is proposed in considering the process throughput, remote controllability, and remote maintenance of an engineering-scale pyroprocessing facility. This study tests two types of mixing equipment in the proposed double-stage homogenization process using surrogate materials. The expected heterogeneity and accounting uncertainty of Pu are calculated based on the surrogate test results. The heterogeneity of Pu was 0.584% obtained from Pressurized Water Reactor (PWR) spent fuel of 59 WGd/tU when the relative standard deviation of the mass ratio, tested from the surrogate powder, is 1%. The uncertainty of the Pu accounting can be lower than 1% when the uncertainty of the spent fuel mass charged into the first mixers is 2%, and the uncertainty of the first sampling mass is 5%.