학술논문

A Fundamental Study Assessing the Diagnostic Performance of Deep Learning for a Brain Metastasis Detection Task
Document Type
Journal Article
Source
Magnetic Resonance in Medical Sciences. 2020, 19(3):184
Subject
bias
brain neoplasms
learning curve
magnetic resonance imaging
neural networks (computer)
Language
English
ISSN
1347-3182
1880-2206
Abstract
Results: Respectively, AlexNet and GoogLeNet had (1) 50 ± 4.6% and 50 ± 4.9% of the maximal mean ± 95% confidence intervals (95% CIs) measured with equal-sized negative versus negative image datasets and positive versus positive image datasets, (2) no less than 10 and 4 of K number in K-CVs fell within the respective maximum biases of 4.6% or 4.9%, (3) 74% of the highest accuracy with equal positive versus negative image ratio dataset and 91% of that with four times of negative-to-positive image ratio dataset, (4) the accuracy improvement curves increasing from 69% to 74% and 73% to 88% as positive versus negative pairs of the training images increased from 500 to 2495, (5) at least nine and six out of 10-CV result sets essential to predict the accuracy ranges by the bootstrap method, and (6) 50% and 45% of metastatic lesion detection accuracies by R-CNNs.