학술논문

Trapping cDNAs Encoding Secreted Proteins from the Salivary Glands of the Malaria Vector Anopheles gambiae
Document Type
research-article
Source
Proceedings of the National Academy of Sciences of the United States of America, 1999 Feb . 96(4), 1516-1521.
Subject
Genetics
Salivary glands
Complementary DNA
Mosquitos
Proteins
Malaria
RNA
Animal glands
Molecular biology
COS cells
In situ hybridization
Language
English
ISSN
00278424
Abstract
The signal sequence trap method was used to isolate cDNAs corresponding to proteins containing secretory leader peptides and whose genes are expressed specifically in the salivary glands of the malaria vector Anopheles gambiae. Fifteen unique cDNA fragments, ranging in size from 150 to 550 bp, were isolated and sequenced in a first round of immunoscreening in COS-7 cells. All but one of the cDNAs contained putative signal sequences at their 5 ′ ends, suggesting that they were likely to encode secreted or transmembrane proteins. Expression analysis by reverse transcription-PCR showed that at least six cDNA fragments were expressed specifically in the salivary glands. Fragments showing a high degree of similarity to D7 and apyrase, two salivary gland-specific genes previously found in Aedes aegypti, were identified. Of interest, three different D7-related cDNAs that are likely to represent a new gene family were found in An. gambiae. Moreover, three salivary gland-specific cDNA fragments that do not show similarity to known proteins in the databases were identified, and the corresponding full length cDNAs were cloned and sequenced. RNA in situ hybridization to whole female salivary glands showed patterns of expression that overlap only in part those observed in the culicine mosquito A. aegypti.