학술논문

The NMDA receptor activation by D-serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle
Document Type
research-article
Source
Proceedings of the National Academy of Sciences of the United States of America, 2019 Oct 01. 116(41), 20736-20742.
Subject
Language
English
ISSN
00278424
10916490
Abstract
Astrocytes express the 3-phosphoglycerate dehydrogenase (Phgdh) enzyme required for the synthesis of L-serine from glucose. Astrocytic L-serine was proposed to regulate NMDAR activity by shuttling to neurons to sustain D-serine production, but this hypothesis remains untested. We now report that inhibition of astrocytic Phgdh suppressed the de novo synthesis of L-and D-serine and reduced the NMDAR synaptic potentials and long-term potentiation (LTP) at the Schaffer collaterals-CA1 synapse. Likewise, enzymatic removal of extracellular L-serine impaired LTP, supporting an L-serine shuttle mechanism between glia and neurons in generating the NMDAR coagonist D-serine. Moreover, deletion of serine racemase (SR) in glutamatergic neurons abrogated D-serine synthesis to the same extent as Phgdh inhibition, suggesting that neurons are the predominant source of the newly synthesized D-serine. We also found that the synaptic NMDAR activation in adult SR-knockout (KO) mice requires Phgdh-derived glycine, despite the sharp decline in the postnatal glycine levels as a result of the emergence of the glycine cleavage system. Unexpectedly, we also discovered that glycine regulates D-serine metabolism by a dual mechanism. The first consists of tonic inhibition of SR by intracellular glycine observed in vitro, primary cultures, and in vivo microdialysis. The second involves a transient glycine-induce D-serine release through the Asc-1 transporter, an effect abolished in Asc-1 KO mice and diminished by deleting SR in glutamatergic neurons. Our observations suggest that glycine is a multifaceted regulator of D-serine metabolism and implicate both D-serine and glycine in mediating NMDAR synaptic activation at the mature hippocampus through a Phgdh-dependent shuttle mechanism.