학술논문

THE CARBOEUROPE REGIONAL EXPERIMENT STRATEGY
Document Type
research-article
Source
Bulletin of the American Meteorological Society, 2006 Oct 01. 87(10), 1367-1379.
Subject
Atmospherics
Atmospheric models
Meteorology
Boundary layers
Land cover
Aircraft
Carbon dioxide
Ceres
Forests
Coniferous forests
Language
English
ISSN
00030007
15200477
Abstract
Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May–June 2005, to determine the variability in concentration gradients and fluxes of CO₂. The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to concentration sample the CO₂ and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns.
Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.