학술논문

Investigation of permeability change in ultradeep coal seams using time-lapse pressure transient analysis; a pilot project in the Cooper Basin, Australia
Document Type
Academic Journal
Source
AAPG Bulletin. 103(1):91-107
Subject
29A|Economic geology - energy sources
Australasia
Australia
Bandanna Formation
Carboniferous
coal seams
coalbed methane
Cooper Basin
directional drilling
drilling
equations
Fairview Field
horizontal drilling
hydraulic fracturing
Lower Permian
matrix
Mesozoic
Monte Carlo analysis
natural gas
oil and gas fields
oil wells
Paleozoic
permeability
Permian
petroleum
porosity
pressure
production
reservoir properties
reservoir rocks
simulation
statistical analysis
Triassic
Upper Carboniferous
Upper Permian
Upper Triassic
well stimulation
Language
English
ISSN
0149-1423
Abstract
Very limited literature is available relating to gas production from ultradeep (>9000 ft [>2700 m]) coal seams. This paper investigates permeability enhancement in ultradeep coal seams of the late Carboniferous and early Permian to Late Triassic Cooper Basin in central Australia, using a time-lapse pressure transient analysis (PTA) approach for a pilot well. The gas production history and three extended shut-in periods are used to construct the time-lapse PTA for the study well. A new approach is introduced to construct a permeability ratio function. This function allows the calculation of permeability change resulting from competition between the compaction and coal-matrix shrinkage effects. Pressure transient analysis indicates that gas flow is dominated by a bilinear flow regime in all extended pressure buildup tests. Hence, reservoir depletion is restricted to the stimulated area near the hydraulic fracture. This implies that well-completion practices that create a large contact area with reservoirs, such as multistage hydraulically fractured horizontal wells, may be required for achieving economic success in these extremely low-permeability reservoirs. The permeability ratio is constructed using the slope of the straight lines in bilinear flow analysis. Because of uncertainty in average reservoir pressure, probabilistic analysis is used and a Monte Carlo simulation is performed to generate a set of possible permeability ratio values. The permeability ratio values indicate that coal permeability has increased during the production life of the wellbore because of the coal-matrix shrinkage effect. Permeability enhancement in this ultradeep coal reservoir has offset the effect of permeability reduction caused by compaction, which is beneficial to gas production.