학술논문

Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis
Document Type
Report
Author abstract
Source
Proceedings of the National Academy of Sciences of the United States. April 29, 2014, Vol. 111 Issue 17, p6359, 6 p.
Subject
United States
Language
English
ISSN
0027-8424
Abstract
Many insects rely on symbiotic microbes for survival, growth, or reproduction. Over evolutionary timescales, the association with intracellular symbionts is stabilized by partner fidelity through strictly vertical symbiont transmission, resulting in congruent host and symbiont phytogenies. However, little is known about how symbioses with extracellular symbionts, representing the majority of insect-associated microorganisms, evolve and remain stable despite opportunities for horizontal exchange and de novo acquisition of symbionts from the environment. Here we demonstrate that host control over symbiont transmission (partner choice) reinforces partner fidelity between solitary wasps and antibiotic-producing bacteria and thereby stabilizes this Cretaceous-age defensive mutualism. Phylogenetic analyses show that three genera of beewolf wasps (Philanthus, Trachypus, and Philanthinus) cultivate a distinct dade of Streptomyces bacteria for protection against pathogenic fungi. The symbionts were acquired from a soil-dwelling ancestor at least 68 million years ago, and vertical transmission via the brood cell and the cocoon surface resulted in host-symbiont codiversification. However, the external mode of transmission also provides opportunities for horizontal transfer, and beewolf species have indeed exchanged symbiont strains, possibly through predation or nest reuse. Experimental infection with nonnative bacteria reveals that--despite successful colonization of the antennal gland reservoirs--transmission to the cocoon is selectively blocked. Thus, partner choice can play an important role even in predominantly vertically transmitted symbioses by stabilizing the cooperative association over evolutionary timescales. protective symbiosis | cospeciation | mutualism stability | Hymenoptera | Crabronidae www.pnas.org/cgi/doi/ 10.1073/pnas.1400457111