학술논문

M344 promotes nonamyloidogenic amyloid precursor protein processing while normalizing Alzheimer's disease genes and improving memory
Document Type
Report
Source
Proceedings of the National Academy of Sciences of the United States. October 24, 2017, Vol. 114 Issue 43, pE9135, 10 p.
Subject
Glycoproteins -- Health aspects
Gene expression -- Health aspects
Alzheimer's disease -- Genetic aspects
Science and technology
Language
English
ISSN
0027-8424
Abstract
Alzheimer's disease (AD) comprises multifactorial ailments for which current therapeutic strategies remain insufficient to broadly address the underlying pathophysiology. Epigenetic gene regulation relies upon multifactorial processes that regulate multiple gene and protein pathways, including those involved in AD. We therefore took an epigenetic approach where a single drug would simultaneously affect the expression of a number of defined AD-related targets. We show that the small-molecule histone deacetylase inhibitor M344 reduces beta-amyloid (A[beta]), reduces tau [Ser.sup.396] phosphorylation, and decreases both [beta]-secretase (BACE) and APOE[epsilon]4 gene expression. M344 increases the expression of AD-relevant genes: BDNF, [alpha]-secretase (ADAM10), MINT2, FE65, REST, SIRT1, BIN1, and ABCA7, among others. M344 increases sAPP[alpha] and CTF[alpha] APP metabolite production, both cleavage products of ADAM10, concordant with increased ADAM10 gene expression. M344 also increases levels of immature APP, supporting an effect on APP trafficking, concurrent with the observed increase in MINT2 and FE65, both shown to increase immature APP in the early secretory pathway. Chronic i.p. treatment of the triple transgenic ([APP.sub.sw]/[PS1.sub.M146V]/[Tau.sub.P301L]) mice with M344, at doses as low as 3 mg/kg, significantly prevented cognitive decline evaluated by Y-maze spontaneous alternation, novel object recognition, and Barnes maze spatial memory tests. M344 displays short brain exposure, indicating that brief pulses of daily drug treatment may be sufficient for long-term efficacy. Together, these data show that M344 normalizes several disparate pathogenic pathways related to AD. M344 therefore serves as an example of how a multitargeting compound could be used to address the polygenic nature of multifactorial diseases. epigenetics | M344 | Alzheimer's | multitarget | APP processing