학술논문

Design, synthesis, and testing toward a 57-codon genome
Document Type
Author abstract
Source
Science. August 19, 2016, Vol. 353 Issue 6301, p819, 4 p.
Subject
Genomics
Codon
Science and technology
Language
English
ISSN
0036-8075
Abstract
Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms.