학술논문

Thioredoxin 1 promotes autophagy through transnitrosylation of Atg7 during myocardial ischemia
Document Type
Report
Source
Journal of Clinical Investigation. February 1, 2023, Vol. 133 Issue 3
Subject
United States
Language
English
ISSN
0021-9738
Abstract
Modification of cysteine residues by oxidative and nitrosative stress affects structure and function of proteins, thereby contributing to the pathogenesis of cardiovascular disease. Although the major function of thioredoxin 1 (Trx1) is to reduce disulfide bonds, it can also act as either a denitrosylase or transnitrosylase in a context-dependent manner. Here we show that Trx1 transnitrosylates Atg7, an E1-like enzyme, thereby stimulating autophagy. During ischemia, Trx1 was oxidized at Cys32-Cys35 of the oxidoreductase catalytic center and S-nitrosylated at Cys73. Unexpectedly, Atg7 Cys545-Cys548 reduced the disulfide bond in Trx1 at Cys32-Cys35 through thiol-disulfide exchange and this then allowed NO to be released from Cys73 in Trx1 and transferred to Atg7 at Cys402. Experiments conducted with Atg7 C402S-knockin mice showed that S- nitrosylation of Atg7 at Cys402 promotes autophagy by stimulating E1-like activity, thereby protecting the heart against ischemia. These results suggest that the thiol-disulfide exchange and the NO transfer are functionally coupled, allowing oxidized Trx1 to mediate a salutary effect during myocardial ischemia through transnitrosylation of Atg7 and stimulation of autophagy.
Introduction Thioredoxinl (Trx1) is a 12 kDa oxidoreductase with an evolutionary conserved CXXC motif at Cys32 and Cys35 in its catalytic center (1). Trx1 reduces proteins with disulfide bonds through [...]