학술논문

Liquid crystalline assembly for potential combinatorial chemo-herbal drug delivery to lung cancer cells
ORIGINAL RESEARCH
Document Type
Academic Journal
Source
International Journal of Nanomedicine. January 31, 2019, Vol. 14, p499, 18 p.
Subject
United States
Egypt
Taiwan
Language
English
ISSN
1178-2013
Abstract
Introduction Lung cancer is one of the most dreadful cancers for both men and women. (1) American Cancer Society estimated that in 2018 lung and bronchus cancers would be responsible [...]
Background: Lung cancer is the most common cancer and the leading cause of total deaths worldwide. Its classified into two major types including non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) based on the origin of abnormal lung cells as well as the smoking status of the patient. NSCLC is the most common and aggressive type of lung cancer representing 80%-85% of all cases. Purpose: The aim of the study was to present lyotropic liquid crystalline nanoparticles (LCNPs) as promising carriers for co-delivery of the chemotherapeutic agent, pemetrexed (PMX) and the herbal drug, resveratrol (RSV) for effective lung cancer management. Methods: The proposed PMX-RSV-LCNPs were prepared by hydrotrope method. Hydrophobic ion pairing with cetyl trimethyl ammonium bromide (CTAB) was implemented to increase the encapsulation efficiency of the hydrophilic PMX up to 95%[+ or -]3.01%. Results: The tailored PMX-RSV-LCNPs exhibited a particle size of 173[+ or -]0.26 nm and biphasic release pattern with a relatively initial burst release within first 3-4 hour followed by sustained release up to 24 hours. Moreover, PMX-RSV-LCNPs manifested superior concentration and time dependent cytotoxicity profile against A549 lung cancer cells with [IC.sub.50] 4.0628 [micro]g/mL. Besides, the enhanced cellular uptake profile based on bioadhesive properties of glyceryl monoolein (GMO) as well as energy independent (cholesterol dependent) pattern. In-vivo evaluations against urethane induced lung cancer bearing mice demonstrated the potentiality of PMX- RSV-LCNPs in tumor growth inhibition via inhibition of angiogenesis and induction of apoptosis. The results were supported by histopathological analysis and immunohistochemical Ki67 staining. Moreover, PMX-RSV-LCNPs displayed a promising safety profile via attenuating nephro- and hepatotoxicity. Conclusion: PMX-RSV-LCNPs elaborated in the current study hold a great promise for lung cancer treatment. Keywords: hydrophobic ion pairing, liquid crystalline nanoparticles, lung cancer, glyceryl monoolein, pemetrexed, resveratrol