학술논문

Cotton Gin Stand Machine-Vision Inspection and Removal System for Plastic Contamination: Hand Intrusion Sensor Design
Document Type
Academic Journal
Source
AgriEngineering. December, 2023, Vol. 6 Issue 1
Subject
United States
Language
English
Abstract
Plastic contamination in cotton lint poses significant challenges to the U.S. cotton industry, with plastic wrap from John Deere round module harvesters being a primary contaminant. Despite efforts to manually remove this plastic during module unwrapping, some inevitably enters the cotton gin’s processing system. To address this, a machine-vision detection and removal system has been developed. This system uses inexpensive color cameras to identify plastic on the gin stand feeder apron, triggering a mechanism that expels the plastic from the cotton stream. However, the system, composed of 30–50 Linux-based ARM computers, requires substantial effort for calibration and tuning and presents a technological barrier for typical cotton gin workers. This research aims to transition the system to a more user-friendly, plug-and-play model by implementing an auto-calibration function. The proposed function dynamically tracks cotton colors while excluding plastic images that could hinder performance. A critical component of this auto-calibration algorithm is the hand intrusion detector, or “HID”, which is discussed in this paper. In the normal operation of a cotton gin, the gin personnel periodically have to clear the machine, which entails running a stick or their arm/hand under the detection cameras. This results in the system capturing a false positive, which interferes with the ability of auto-calibration algorithms to function correctly. Hence, there is a critical need for an HID to remove these false positives from the record. The anticipated benefits of the auto-calibration function include reduced setup and maintenance overhead, less reliance on skilled personnel, and enhanced adoption of the plastic removal system within the cotton ginning industry.
Author(s): Mathew G. Pelletier (corresponding author) [1,*]; John D. Wanjura [1]; Jon R. Wakefield [1]; Greg A. Holt [1]; Neha Kothari [2] 1. Introduction The research reported herein is a [...]