학술논문

Pax6 and Pdx1 are required for production of glucose-dependent insulinotropic polypeptide in proglucagon-expressing L cells
Document Type
Author abstract
Clinical report
Source
American Journal of Physiology (Consolidated). Sept 2008, Vol. 295 Issue 3, pE648, 10 p.
Subject
United States
Language
English
ISSN
0002-9513
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are incretin hormones that play important roles in maintaining glucose homeostasis and are being actively pursued as novel therapeutic agents for diabetes. GIP is produced by dispersed enteroendocrine cells and interestingly at times is coexpressed with GLP-1. We sought to determine the factors that selectively define GIP- vs. GLP-1-expressing cells. We performed comparative immunostaining of Pax6 and Pdx1 in GIP- and GLP-1-secreting cells. We investigated whether Pax6 and Pdx1 activate the human GIP promoter in control IEC-6 cells and GIP-expressing STC-1 cells. EMSA was performed to assess the binding of these transcription factors to the GIP promoter. Pax6 and Pdx1 consistently colocalized in GIP-immunoreactive cells. Cells that coexpress GIP and GLP-1 were Pax6 and Pdx1 positive, whereas cells expressing only GLP-1 were Pax6 positive but did not express Pdx1. GIP promoter activity was enhanced in IEC-6 cells by exogenous Pax6 or Pdx1 and diminished in STC-1 cells by inhibition of endogenous Pax6 or Pdx1 by dominant-negative forms. Promoter truncation analysis revealed a major loss of promoter activity when the sequence between -184 to -145 bp was deleted. EMSA studies indicated that Pax6 and Pdx1 bind to this proximal sequence of the human GIP promoter. Our findings indicate that concomitant expression of Pax6 and Pdx1 is important for GIP expression. Our results also suggest that the presence of Pdx1 defines whether GLP-1-expressing gastrointestinal L cells also coexpress GIP. transcriptional regulation; gut; K cell; glucagon-like peptide-1; glucose-dependent insulinotropic polypeptide

Online Access