학술논문

Morphology-guided transcriptomic analysis of human pancreatic cancer organoids reveals microenvironmental signals that enhance invasion
Document Type
Report
Source
Journal of Clinical Investigation. April 15, 2023, Vol. 133 Issue 8
Subject
United States
Language
English
ISSN
0021-9738
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently presents with metastasis, but the molecular programs in human PDAC cells that drive invasion are not well understood. Using an experimental pipeline enabling PDAC organoid isolation and collection based on invasive phenotype, we assessed the transcriptomic programs associated with invasion in our organoid model. We identified differentially expressed genes in invasive organoids compared with matched noninvasive organoids from the same patients, and we confirmed that the encoded proteins were enhanced in organoid invasive protrusions. We identified 3 distinct transcriptomic groups in invasive organoids, 2 of which correlated directly with the morphological invasion patterns and were characterized by distinct upregulated pathways. Leveraging publicly available single-cell RNA-sequencing data, we mapped our transcriptomic groups onto human PDAC tissue samples, highlighting differences in the tumor microenvironment between transcriptomic groups and suggesting that non-neoplastic cells in the tumor microenvironment can modulate tumor cell invasion. To further address this possibility, we performed computational ligand-receptor analysis and validated the impact of multiple ligands (TGF-[beta]1, IL-6, CXCL12, MMP9) on invasion and gene expression in an independent cohort of fresh human PDAC organoids. Our results identify molecular programs driving morphologically defined invasion patterns and highlight the tumor microenvironment as a potential modulator of these programs.
Introduction Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis that is due, at least in part, to its late stage at diagnosis, with almost 90% of patients presenting with metastasis [...]